I.S.I. Bangalore Centre Mid-semestral Examination 2001-2002 B. Math. Hons.II year - Algebra III

21.09.2001 — 9.30 - 12.30 — Instructor : B.Sury

Part A : 60 minutes

A 1.

(a) Define a finitely generated module over a ring A. When is it called torsion-free?

(b) If M is an A-module and $S \subset M$ a subset of it, when is M said to be free on the set S?

A 2.

State the structure theorem for finitely generated modules over a PID.

A 3.

Let L/K be a field extension. (a) Define the degree of L over K. (b) If $\alpha \in L$, when is it said to be algebraic over K? (c) If $\alpha \in L$, define $K[\alpha]$ and $K(\alpha)$. (d) If [L:K] = 17, how many fields E exist with $K \subseteq E \subseteq L$.

A 4.

If $\alpha \in L$ is algebraic over K, define its minimal polynomial $p \in K[X]$ over K and show that if $f \in K[X]$ with $f(\alpha) = 0$, then f = pq for some $q \in K[X]$.

A 5.

If $f \in K[X]$ is monic, irreducible, prove that L = K[X]/(f) is a finite extension of K in which f has a root.

A 6.

Define algebraic closure of a field.

(a) Use Eisenstein's criterion to the polynomials X^n-2 as n varies to produce an infinite subset of $\overline{\mathbf{Q}}$, the algebraic closure of \mathbf{Q} which is linearly independent over \mathbf{Q} .

(b) Is $\mathbf{C}(X)$ algebraically closed ? Why ?

I.S.I. Bangalore — Ist Midsemestral exam — 2001-2002 B.Math.Hons.IInd Year Subject : Algebra III — Instructor : B.Sury

Part B: 90 minutes

B 1.

If $\sigma : K \to K'$ is a field isomorphism, and $f \in K[X]$ is monic, irreducible, prove that $f^{\sigma} \in K'[X]$ is monic, irreducible. Further, if L, L' are extensions of K, K' respectively, containing roots α, α' of f, f^{σ} , show that σ extends to an isomorphism from $K(\alpha)$ to $K'(\alpha')$.

B 2.

Let L/K be a field extension. If $\alpha, \beta \in L$ are algebraic over K, prove that $\alpha + \beta$ is algebraic over K.

В 3.

If Ω is an algebraic closure of a field K, prove that $\alpha, \beta \in \Omega$ are conjugates if, and only if, they have the same minimal polynomial over K.

B 4.

Let G be any group and K be any field. Show that the set of group homomorphisms from G to K^* is a K-linearly independent set i.e., if $\phi_1, \dots, \phi_r : G \to K^*$ and $a_1, \dots, a_r \in K$ satisfy $\sum_{i=1}^r a_i \phi(g) = 0$ for all $g \in G$, then $a_i = 0$ for all i.

B 5.

Compute the group of automorphisms of $\mathbf{C}(X)$ which restrict to the identity on \mathbf{C} .

B 6.

Let L/K be a (possibly infinite) algebraic extension which is separable. Suppose there exists n such that for any $a \in L$, the degree of min(a, K) is $\leq n$. Prove that L is a finite extension of K and $[L:K] \leq n$.